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The applicability of the method of matched asymptotic expansions to both propeller 
aerodynamics and acoustics is investigated. The method is applied to a propeller with 
blades of high aspect ratio, in a uniform axial flow. The first two terms of the inner 
expansion and the first three terms of the outer expansion are considered. The 
matching yields an expression for the spanwise distribution of the downwash 
velocity. A numerical application shows that the first two terms of the inner solution 
do not yield an acceptable approximation for the downwash velocity. However, 
recasting the analytical expressions into an integral equation, similar to Prandtl's 
lifting line equation for wings, yields results for both aerodynamic and acoustic 
quantities, which agree well with experimental results. The method thus constitutes 
a practical analysis method for conventional propellers. 

1. Introduction 
The method of matched asymptotic expansions has been proven to be a powerful 

tool for the analysis of the flow about airfoils of high aspect ratio. The essential 
elements of the method were outlined by Van Dyke (1964, 1975), who applied it to 
an airfoil in a uniform, incompressible flow. Many extensions of this first application 
have since been worked out by other authors. An application which bears a close 
relationship to the present study is the one considered by Van Holten (1975, 1976), 
who applied the method to a helicopter rotor in forward flight. 

In the present work we will consider a propeller, with blades of high aspect ratio, 
in an axial compressible flow. The expansion parameter is the reciprocal of the aspect 
ratio. In contrast to Van Holten, who used a somewhat different formulation in 
terms of a so-called common field, we will follow Van Dyke's asymptotic matching 
rule as closely as possible. Within the latter formalism the flow variables are 
systematically expanded in the small parameter. In this paper, the first two terms of 
the inner expansion and the first three terms of the outer expansion for both the 
velocity and pressure field are derived. 

It will be shown, however, that if these expressions are applied to a typical 
propeller, the resulting (first-order) downwash velocity is too large, i.e. the induced 
angle of attack is of the same order as the geometrical (i.e. zeroth-order) angle of 
attack, instead of a small perturbation. As the propeller considered has an aspect 
ratio which is quite representative of conventional propellers, this means that the 
flow about such propellers cannot be approximated by the first few terms of an 
asymptotic expansion in the reciprocal aspect ratio. 

It seems that one of the conditions required for the asymptotic matching principle 
to be valid is not satisfied, i.e. the expansion parameter is not small enough to allow 
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for the existence of a region where both the inner and the outer solution are valid. 
A general discussion on the necessary conditions for the method can be found in, for 
example, Crighton & Leppington (1973) and Van Dyke (1975). 

Nevertheless, the method of matched asymptotic expansions leads to some useful 
analytical expressions for both the aerodynamics and acoustics of conventional 
propellers. The expression for the downwash velocity can be used in an integral 
equation, similar to Prandtl’s equation for wings (c.g. Prandtl & Tietjens 1957, ch. 
VI). The solution of this equation appears to yield an accurate description of the 
propeller aerodynamics, although it  is not a consistent asymptotic approximation in 
contrast to the solutions of the method of matched asymptotic expansions itself. 
With respect to the acoustics, the method leads to an expression for the acoustic 
pressure, which consists of lift, thickness and pitching moment components. Unlike 
many other methods for propeller aerodynamics, e.g. Goldstein (1929) and Reissner 
(1937), no explicit assumptions about the location of the trailing vortices have to be 
made. 

In  comparison to lifting surface theory, e.g. Hanson (1985), Sparenberg (1984) and 
Schulten (1984), the present theory has the advantage that it does not require a 
detailed geometry handling; it will be shown that, in principle, five numbers per 
blade section are sufficient for an accurate calculation. Furthermore, in lifting 
surface theories the induced velocity is not incorporated, i.e. the lift on a blade 
section is assumed to  be perpendicular to the local undisturbed flow velocity. A 
lifting surface theory, however, has the advantage that it can be applied to propfans, 
i.e. propellers characterized by highly swept blades of low aspect ratio. These 
properties are the opposite of the properties required for the present method to be 
useful. In  view of this restriction the applicability of the theory is hardly affected if 
the tip speed is assumed to be subsonic, which is the usual operating condition for 
conventional propellers. 

A further simplification is achieved by the application of thin airfoil theory 
(Glauert 1959, p. 87), in combination with the Prandtl-Glauert transformation 
(Liepmann & Puckett 1947, p. 138) for the inner solution, although this is not a 
prerequisite for the method. This implies that  we will incorporate only first-order 
perturbations with respect to the main flow. Although all quantities can be fully 
determined in principle without this approximation, the numerical application is in 
general not a simple task, whereas the use of a thin airfoil theory reduces the 
numerical work involved considerably. Furthermore, it has been shown by Hanson 
& Fink (1979), that for propellers operating under subsonic conditions, the nonlinear 
terms contribute very little to the sound field. 

In  $2 we give the mathematical description of the problem and an outline of the 
solution through matched asymptotic expansions. It is shown how by this method 
the full problem is separated into a so-called inner problem and an outer problem. In 
$3 we derive the first-order solution of the outer problem. It is shown that the inner 
expansion of the outer solution determines the boundary conditions a t  ‘infinity ’ for 
the inner problem. The zeroth- and first-order solutions of the inner problem are 
studied in $4. Although the details of the inner flow field are left open, a description 
of its far-field approximation is given, which is sufficient for the matching to the 
outer solution. The results for the inner solution are used in $5 for the derivation of 
the second-order outer solution. It is also shown how the outer solution can be 
expressed as a sum of propeller harmonics. 

In $6 a numerical application to a tested model propeller is considered. This shows 
that the first two terms of the inner solution yield an unrealistic result for the 
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circulation about the propeller blades. An explanation for this failure, as compared 
to the equivalent theory for stationary wings, is discussed in $7, where we also 
consider an alternative approach, which consists of transforming the asymptotic 
approximation into an integral equation. In $8 we compare both the aerodynamic 
and acoustic results of this modified method to the experimental data. The 
agreement turns out to be good for the performance data, and reasonable for the 
acoustic data. 

2. Mathematical description of the problem 
We consider a propeller with B blades of a high aspect ratio in a uniform axial flow, 

which is subsonic relative to the propeller. Furthermore we assume that the flow is 
inviscid and that the influence of the hub on the flow can be neglected. The high 
aspect ratio allows the introduction of a small parameter, which we take to be the 
ratio of the chord at 0.7 radius to the radius of the propeller: 

E = co, , /R.  (2 .1)  

The precise value of this parameter is irrelevant, as, for the moment, it is only used 
as a bookkeeping parameter. 

In what follows all quantities are made dimensionless with the density and speed 
of sound at infinity, and the propeller radius. We use a cylindrical coordinate system 
in which the propeller is at  rest, i.e. the coordinate system rotates with angular 
velocity Q with respect to an inertial reference frame, see figure 1. The line x = 0, 
6 = 0 is chosen to coincide with the pitch-change axis of one of the blades, which axis 
is thus supposed to be perpendicular to the x-axis. In  this coordinate system we have 
a stationary problem and the Euler equations read (e.g. Vavra 1960, ch. 7) :  

v-  (pv)  = 0 ,  (2 .2a)  

p(v .  V )  v +  v p  = - p [ 2 R  x v +  n x (n x r ) ] ,  (2 .2b)  

where p is the density, v the flow velocity, and p the pressure. 51 is the angular 
velocity vector, in this case equal to Qi,, where i, is the unit vector in the x-direction. 

A t  infinity we have 

U=Mi,-Qri, ,  pa = 1, p ,  = l/y, (2 .3)  

where M is the axial main flow Mach number and y is the specific heat ratio. 
Equations (2.3) determine the boundary conditions at  infinity, while the boundary 
conditions at  the blades are determined by the blade geometry and the Kutta 
condition. We will not consider a boundary condition at  the hub, but simply assume 
that the blade (abruptly) ends at  T = rh. This assumption significantly simplifies the 
analytical calculations, while details of the flow at the hub region have little influence 
on either the performance or the noise levels of a propeller. The main cause for this 
is the low speed of the flow relative to the blade a t  the hub. 

If we want to find a solution for the pressure (or velocity) field in terms of an 
expansion in powers of E ,  there are two ways of doing so. First we consider the case 
that the distance from the propeller blades is of order unity, in which case an 
expansion can indeed be found. This expansion is called the outer expansion and 
denoted by a superscript o : 

(2 .4)  p y r ,  e, x) = p:(T, e, x) + Ep;(r, 0, x) + +;(T, e, x) + . . . . 
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FIGURE 1 .  The cylindrical coordinate system. 

This expansion, however, is not valid a t  field points in the vicinity of a blade. 
Furthermore, i t  contains some undetermined coefficients, as the boundary conditions 
at the blades cannot be imposed. 

An expansion which is valid in the vicinity of a blade can be found by considering 
the distance to that blade to be of order E. For field points near the blade a t  8 = 0, 
for example, we thus define the so-called inner variables : 

@ = els ,  z = (2.5) 

(2.6) 

and write for the inner expansion: 

pi (r ,  @, 2) = pa(r, @, Z) +spi(r,  17, Z) +s2pi(rr @, Z) + . . . . 
This expansion is neither fully determined nor is it valid a t  distances of the order of 
unity from the blade. 

We now assume that a region exists where both expansions are valid, which can 
of course only be true if the inner and outer expansions can be related to each other. 
This should determine the coefficients that are still unknown. The most convenient 
way to establish the relation between the inner and outer expansions, is by use of the 
asymptotic matching principle (Van Dyke 1964, 1975). In  each term of the outer 
expansion we replace x by EZ and 0 by se, and expand in E .  Anticipating the results 
of the next section we write 

p:(r,e@,sZ) = e - - n [ p ~ o + e p ~ l + ~ Z p ~ z +  ...I. (2.7) 

I n  the same way we write 

The asymptotic matching principle is now stated as 

smpEm(r, @, z) = e n p i n ( r r  8, x). (2.9) 

Of course we could have written the same for the velocity or the density field. It 
should be noted that the expansions given above are incomplete, as usually not only 
powers of E occur, but also powers of lne. According to Crighton & Leppington 
(1973), one should regard terms which are proportional to e"(1ne)' as being of order 
en, which amounts to regarding Ins as being of order unity. 

In  this paper we will calculate p and v up to n = 2 and m = 1. In  the next section 
we derive an expression for the outer expansion up to first order in e .  
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3. The first-order outer solution 
The Euler equations, as given by (2.2), are valid everywhere apart from the 

interior of the propeller blades. We can modify these equations to make them valid 
everywhere by introducing a function S, which is negative inside the blades, positive 
outside and zero on the surface of the blades. We then find from (2.2a) : 

V - H ( S )  [u’+ Up’+u’p’] = [u’+p’u].VSS(S), (3.1) 

where H ( x )  is the Heaviside step function, u’ = u- U and p’ = p- 1. 
As VSJ,,, is a vector along the normal on the surface, the second term in square 

brackets on the right-hand side of (3.1) makes no contribution. The remaining 
expression at the right-hand side is equal to - U.VS6(S) .  By using 

( u .  V) u = -51 x u (3.2) 

and sax(51xr )=-51xU (3.3) 

p ( u . V )  [H(S)  u’]+V[H(X)p’] = - p a  x H ( S )  u ’ + [ p u ’ u - v S + p ’ v s ] ~ ( s ) ,  

we obtain from (2.26) 

(3.4) 

where p’ = p - p , .  Notice that again the first term in square brackets makes no 
contribution. 

We now assume that we can write a multipole expansion for the remaining source 
terms, the first two terms of which are given by, respectively, 

and 

1 B-1 

U-VS6(S)  x - 2 [ Q j ( r ) + 4 ( r ) . V ] 6 ( x ) 6  

p’VSS(S) x -  I: [ - L 5 ( r ) + D , ( r ) . V ] 6 ( x ) 6  

r 3-0 

1 B-1 

?- j-0 

(3.5) 

where D, is a tensor of rank two. 
These equations imply that, in the derivation of the outer solution, the propeller 

is reduced to a system of rotating line singularities. This allows us to drop the 
Heaviside function in the rest of this section. We will now show that, at each order 
in B ,  we have to incorporate only a limited number of singularities. 

It is shown in Appendix A that L,(r) is the lift per unit length on the blade section 
at r.  Furthermore i t  can be shown that: 

F 

4, xo-% ox = -Mp, (3.10) 

where C5(r) is the boundary contour of the section at r ,  A is the area enclosed by it, 
p is the dummy vector over which is integrated, dl is the differential arclength and 
r is the position vector of the intersection of the pitch change axis and the blade 
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section. M ,  is the pitching moment. The last step in (3.8) and (3.9) is justified by the 
application of (first-order) thin airfoil theory, as already mentioned in the 
introduction. 

As the lift scales on the chord, Li is expanded as 

Lj(r) = EL~,~(~)+E~L~,~(T)+... . (3.11) 

The expansion for 0, starts with a term of order 2, 

component of n may be considered to be of order e, we have 
The lift is linear in the unit normal vector on the blade surface, n, and as the r- 

LA 1 ,  r = 0. (3.12) 

The assumption that n, is of order 8 is of course not valid within a distance of order 
e from the tip. A rigorous treatment of the tip would require the introduction of a 
third region in the calculation (besides the inner and outer regions), which should 
account for the influence of the radial flow and forces that are relatively important 
near the tip. I n  the present analysis they are of higher order and thus neglected. 
Their influence on the noise of a propfan is discussed by Hanson (1986). A discussion 
on the influence of the tip shape in the case of wing aerodynamics is given by Van 
Dyke (1964). Note that the r-components of Oj, are also zero. 

As the source terms are (at least) of first order in e, the zeroth-order perturbations 
vanish, and we have, see (2.3), 

u;=  u, p;=  1,  p i =  l / y .  (3.13) 

Note that we have assumed here that the derivatives in the Euler equations are of 
order unity or smaller. As the wavelength corresponding to the blade passing 
frequency is of the order of 27c/BSZ, and SZ is supposed to be smaller than unity, the 
assumption is valid for the first harmonics. 

At first order we find for the (modified) Euler equations 

v*u;+ u-vp; = 0, (3.14a) 

(3.14b) 

This equation is similar to  the equation considered by Wilmott (1988) in his 
treatment of the unsteady lifting-line problem for wings. 

Using the isentropic relation between pressure and density, we have p; = p; .  Next 
we apply the operators U.V and V -  to (3.14a) and (3.14b) respectively, and subtract 
the results. We then obtain 

1 
j=o r 

B-1 

[(u.v)z-v~]p; = c v . -L j , , s (x ) s  (3.15) 

where the differential operator at the right-hand side also applies to the &functions. 
We can obtain a Green’s function for the operator a t  the left-hand side by 
transforming to the non-rotating frame of reference, which transforms this operator 
into that of a convective wave equation, for which the Green’s function is well- 
known. Application to a rotating point source then gives the Green’s function we are 
looking for: 

(3.16) 
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where we have to sum over the solutions of 

(3.17) 

in which (3.18) 

P has the usual meaning of (1 -M2)+. 
It is not difficult to prove that, if Irp521//3 < 1, there exists one and only one 

solution to (3.17). As long as we are only interested in matching the outer and inner 
solutions, we have r < 1, while Ips11 < P is satisfied if the flow relative to the propeller 
at  radius p is subsonic. Therefore, we drop the subscript k from here. One can also 
prove that, under the same conditions, R -  (sZrp/@) sin $ 0. 

We now find for the solution of (3.15): 

(3.19) 
where V, is the gradient operator applied to the source coordinates (p,  g5 and 6)  and 

Note that the integration in the radial direction is limited by the hub radius, rh, and 
the tip, r = 1, as there is no source outside this range. 

Next we will calculate the fist two terms of the inner expansion with respect to 
the blade at  B = 0, i.e. with blade number j = 0. To do this we replace x by and 
6' by E# and expand in E.  In  the terms with j + 0 one can take the limit E + 0 without 
any problem, which means that these terms are of order h. Once L,, is known they 
can be calculated numerically, with x and 8 set to zero. 

For j = 0, however, the integrand, in the limit s+O, has a singularity at p = r ,  
which cannot be integrated. This singularity occurs as the solution of (3.20) for 
x = 0, 6' = 0, and p = r is given by R, = 0 and $o = 0. With p = r + c  and c 5 B, we 
have 

(3.21) - €  P R, = - rsZ(rSzs+MP, 
Wfi E + - Rs, , + O(ez), 

where P, = [ 1 -W - (SZr)2]i 

and (3.22) 
- €  52 

$0 = .vpz (rrn+MP, p') +--R, + 0(e2), 
B 

5 

(3.23) 
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1 
FIGURE 2. The local coordinates Y and q, 

where we have introduced the helicoidal coordinates s and q, and incorporated the 
local Prandtl-Glauert factor, see figure 2 : 

(3.24) s = -(Mx-rOrB), 1 q = --(rS2x+MrB). P1 
U U 

The leading term of the inner expansion of py is now given by 

where L, and L, are the components of L in the s- and q-directions, without 
incorporation of the Prandtl-Glauert factor, i.e. these components are obtained from 
L, and L, by a rotation only. py0 is the pressure field associated with the bound vortex 
along the blade. It can be shown that the remaining part of the term which is linear 
in xLo, l , z  contains only terms of order E and sln s, and is therefore a part of sp;z (see 
the remark on the logarithmic terms in $2). We thus find 

(3.26) 

Next we turn to the calculation of the first-order velocity field, which we require 
to  determine the downwash velocity a t  the blade. It can be obtained by integration 
of the first-order momentum equation, (3.14b), along the characteristics. The result 
is 

Note that the path of integration in the first term coincides with the (zeroth-order) 
streamline through (r,O,x). The second term is singular in the wake and zero 
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elsewhere. As this term plays no role in the matching process we will omit it in the 
rest of this section. It will be discussed further in $5.  

The evaluation of the first two terms of the inner expansion of u: is an important 
part of this paper. The &component is given by 

111 52 
( P 

+ (2-5) -Rj Q2P sin ($,) -pQM Rs,,  cos ($,) +-R; sin ($,) df dp, (3.28) B2 
where the coordinates are taken as in the integrand in (3.27). The integrand is 
singular at 5 = 0 f o r j  = 0, x = 0, 0 = 0 and p = r .  Let us write the term with j = 0 
as 

JrhW dP. (3.29) 

As the main contributions to the (-integral, for p x r and small values of z and 0, 
come from the region of small 5, we can use the approximations given by 
(3.21)-( 3.23), i.e. 

1 

(3.30) 

(3.31) 

(3.32) 

Now we denote by I&I) the approximation of I ( p )  obtained by using (3.30)-(3.32), 
and 

and by keeping only the most divergent terms. This leads to 

sin x $o, C O S ( + ~ )  x 1, p x r (except in Rs,o) ,  (3.33) 

x [ ( ~ - ~ 5 ) ~ o , l , ~ ~ ~ ~ + B ~ ~ ~ o , l , * ~ r ~ ] - r r 5 2 ~ o , 1 , . + M B ~ ~ o , ~ , * ~ r ~ l } d s ~  U (3.34) 

where (3.32) for Rs,o has to be used. Next we rewrite (3.29) as 

(3.35) 

5-2 
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The evaluation of the last integral is a bit laborious but straightforward. The result, 
expressed in inner coordinates, is 

1 -rh 
+ O ( E ) .  (3.36) 

M 
+=Lo, 1, Q (r-rh) (1  - r )  

In  the first term on the right-hand side of (3.35) the limit c -+ 0 can be taken and we 
find 

1 1 M 1 -rh 
[v;,oI,-o = ;2':0,0+p ~ ~ ~ P ~ - ~ , , ~ P ~ l , - O , q - 0 ~ P + ~ ~ o , l , , ~ ~ ~  (r-rh) 3 

(3.37) 
1% 

where the first term is defined bv the first term of the right-hand side of (3.36) and 
P denotes the Cauchy principll value. Furthermore w i  have 

-M 1 
4 n P  Lo. 1, U P ) L O ,  q-0 = - (p_r)2 * 

This completes our considerations for v: ,~ .  For v ; , ~  we have from (3.27): 

rQ 1 
v;,z = -v;,O-,p;. M 

This yields for the lowest-order terms in the s- and q-directions: 

1 CLO, 1 , 8 ( d  +PI !$o, 1 , q W  

?+p 
1 @o, 1, s(4 -P1 SLo, 1, . 

vY0.s = ~ 

2xP1 u 

v:o,q = F u  9+p 

(3.38) 

(3.39) 

(3.40) 

UL is the velocity field associated with the bound vortex along the blade, while vyl 
(the remaining part of the right-hand side of (3.37)) is the downwash velocity a t  the 
blade, as will be shown in the next section. If SZ = 0 we have 

[v;l,,l,-o = 0, 
where we have assumed that Lo, 1, Q( 1) = Lo, 1, q(rh) = 0. This result is familiar from 
wing theory. It can be shown that the expansion of v : , ~  starts with a term of order 
E O ,  but we will not consider this component any further. 

4. The zeroth- and first-order inner solutions 

for the r-component of the momentum equation : 
We substitute x = EZ and 0 = d in (2.2) and expand in E .  At lowest order we find 

P ; ( w 2 ) v ; , r  = 0, (4.1) 
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where 
a . l a  

V, = i,-+i,---. az rae 
A solution for vX. which matches the outer solution, as far as the latter is known from 
$3, is = 0. 

This leaves us with a two-dimensional zeroth-order problem : 

v,.(p:v',) = 0, (4 .34  
p;(v',.v2)u',+v,p: = 0. (4.3b) 

An explicit solution to these equations depends on the geometry of the blade section 
at r ,  and on the matching to the outer solution. From the matching principle, (2.9) 
and (3.13), we immediately find 

This means that the zeroth-order inner problem is the two-dimensional problem of 
a blade section in a uniform compressible flow with velocity U. In principle, it does 
not matter which method is used to solve this problem ; even experimental data can 
be used. For convenience we use the thin airfoil approximation in this paper. Within 
this approximation, the first-order lift on a section of the blade at  8 = 0 is thus given 
by 

40 = u, pi0 = 1, p:o = I/?. (4.4) 

c 2K 
Lo,i,g = ~ ~ - - s g n ( ~ ) ( a - a a , ) ,  Lo.1,~ = 0, (4.5) 

E P 1  

where c is the chord, a is the angle between U and the chord, and a. the angle of zero 
lift. The latter can be calculated from the camber line. 

The equations for the next term in the outer expansions read 

v , .~ ,+u .v~p; l  = o ,  (u.v,)u~,+v~p:, =o .  (4.6a, b )  
If we take the inner product of Uwith (4.6b) and subtract the result from (4.6a), we 
find : 

(4.7) 
where U'ol = V2q5i1. So the velocity potential satisfies the Laplace equation in the 
(s, q )  coordinate frame. This means that we can make use of the fundamental solutions 
of the Laplace equation in two dimensions. It is obvious from the conservation of 
mass flow, the matching principle and (3.40), that only the vortex solution for the 
potential is required. We thus have 

where 
+:1 = rlX/(2N (4.8) 

= tan-' (q / s ) ,  and rl is the first-order circulation. This yields 

The matching with (3.40) yields Kutta-Joukowski's theorem : 

1 C K  
T', =  EL,,^,^ = -U--sgn(Q)(a-a,). 

6/31 
(4.10) 

The same results could have been obtained by matching the pressure field. We thus 
find that dl (or uyo) is the velocity field of the so-called bound vortex. 

Next we consider (4.3) at second order: 

vz * d2 + u. v, Pi2 = - vz * (dl 41, + (Y - 1 1 Pi1 u. VZP,:,, ( 4 . 1 1 ~ )  
( ~ ~ v z ) ~ Z + v , P : ,  = - r ) : l ( ~ . V z ) ~ l - ( v ' , l ' V 2 ) d l ,  (4.11b) 
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where the isentropic relation between pressure and density has been used. The 
application of thin airfoil theory implies the neglecting of terms which are quadratic 
in the perturbation quantities, so the right-hand sides of (4.11 a,  b )  are put to zero. 
Thus we also find for the second-order velocity potential: 

[v; - (Us V,),] 4, = 0. (4.12) 

As u;, is the second-order term in the outer expansion, its potential should be of first 
order in (sZ+q2) - - f ,  which corresponds to a dipole source: 

1 $'o, = - (s2+$)-' s& (%,8 cosx +N,,  q sinx), (4.13) 

where N, is the (second-order) dipole vector. In Appendix B it is shown how the 
components of a dipole source can be related to the area of the blade section and the 
pitching moment. This completes our considerations on the zeroth-order inner 
solution. 

The equations for the first-order terms in the inner expansions are 

v, - (p: u:, + p'o 0:) = 0, ( 4 . 1 4 ~ )  

1 . .  
r 

pi( uio - V,) vi0 + p i (  u: - V,) u'o +p'o(v', - VZ) v'; --pi(wi, s)2 i, + v,p: 

= -251 x uio-51 x (51 x r ) .  (4.14b) 

The r-component of (4.14b) relates w:, to the zeroth-order quantities. In the x- and 
6-components of (4.14b), however, w:,, does not occur, and we are left again with a 
two-dimensional problem. (Note that the right-hand side of (4.14b) has an r- 
component only.) The zeroth-order expansion of (4.14) yields 

u'v,p:,+vz'v';o = 0, (u*v,)u:o+v,p:o = 0, (4.15a, b)  

which results in pi, = pi, = 0, 4, = 0, in agreement with (2.9) and (3.13). 
At 'infinity' the first-order velocity is thus given by & = uyl, where an expression 

for the latter quantity has been derived in the previous section, and similarly for the 
density and pressure. This implies that u:, p: and p: are the first-order corrections (in 
E )  for the two-dimensional flow about a blade section, with the boundary conditions 
at infinity given by u = U+E&, p = I+E&, and p = l/y+epyl. 

5. The second-order outer solution 
At second order, the outer problem is given by 

(5.1 a) 

where in ( 5 . 1 ~ )  we have applied (3.8) and neglected the nonlinear terms. We now 
repeat the procedure of $3, i.e. we apply the operators U s  and V .  to ( 5 . l a )  and (5.1 b )  
respectively, and find after subtraction 
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with D' = D+ UP, and where on the right-hand side the differential operators also 
apply to the &functions. 

Next we write 
P: = P D  + P L ,  (5.3) 

where p ,  is generated by the tensor D;, and p ,  by the vector Lj, 2. It will be shown 
next that the pressure corresponding to the right-hand side of (4.13) can be matched 
to p,. Note that in the inner product of V with D;, 2, from both left and right, the r -  
components do not contribute : see the remark on the r-component of Dj, in $3. The 
procedure to determine the first term of the inner expansion of pD7 with respect to 
the blade at 0 = 0, is essentially the same as the one used to derive the expression for 
pya. The result is 

The pressure which corresponds to the right-hand side of (4.13) is 

Matching thus results in 

D o , 2 , s s - ~ A l ~ 2 - f l ~ o , 2 , g *  = ~ P l N Z J ,  D o , 2 , s g + D o , 2 , q s  = UN,,,. 
From Appendix B we have 

We now fmd from (3.9), (3.10), (5.6) and (5.7) 

2 . 8 8  = '3 D*, 2 . 8 9  = - M p ,  2, Dl, 2 ,  P S  = '9 D j ,  2 ,  gp = 

The (second-order) pitching moment about the origin is given by 

where ,uo is another constant determined by the camber line, and d is the position of 
the quarter-chord point relative to the origin, i.e. the intersection of the pitch change 
axis with the blade section, with the positive direction towards the trailing edge. 
Note that the pitching moment is a scalar, being the same for all blades at 
corresponding sections, and we therefore omit the subscript denoting the blade 
number . 

In view of the discussion at the end of $4, the second-order circulation r2 should 
be taken such that sTl + E 2 r 2  is the circulation about the blade section in a two- 
dimensional flow, which is at infinity given by u = U+euy,, p = 1 +.spyI and 
p = 1 / y + epyl. It is therefore given by 

(5.10) 

Now we can write down the outer pressure field up to second order. As we are mainly 
interested in this field because of its acoustic meaning, we will use an acoustically 
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more appropriate expression for the Green’s function. By application of Fourier and 
Hankel transforms we find the following alternative to (3.16) : 

x exp (2 [MmO + sgn (x - 6 )  ~ ( y ,  - m a ) ]  (z - 5)) dy, (5.11) 

where J, is the Bessel function of the first kind and ~ ~ ( y ,  w )  = w2-(y/3)’,  ImK < 0. If 
we use this to  solve (3.15) and (5.2), we find 

p” 

and 

where k, is the axial wavenumber: 

k, = [MnBQ+sgn (x) ~ ( y ,  -nBQ)]/p2. (5.14) 

I n  deriving (5.12) and (5.13) we have used the fact that  the components of L and D, 
in a cylindrical coordinate frame, are the same for all blades, which enabled us to 
drop the subscript j and to  sum over j. Furthermore, the r-component of L is 
negligible in the thin airfoil approximation. In the inertial coordinate frame, in which 
the propeller rotates but does not translate, the angular coordinate is given by 
e” = 8+Qt. In  this coordinate frame the pressure is thus expressed as a sum of the 
harmonics of the blade passing frequency, which is the motivation for using (5.11), 
instead of (3.16). 

In  (5.12) and (5.13) the contributions to the noise from lift, thickness, and pitching 
moment are clearly distinguishable. Note that in the present hierarchy the thickness 
noise is of second order, i.e. of higher order than the loading noise. The expression for 
the latter can be regarded as an improved version of Gutin’s result, which is only 
valid in the far field (Gutin 1948). 

If (5.12) is used in (3.27) we find for the first-order outer velocity field 

1 UB-’ 
- H ( x ) - -  c L,6 

5-0 

(5.15) 
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The contribution of the first term between curly brackets is the (first-order) acoustic 
particle velocity, the contribution of the second term is the convective velocity 
associated with the downstream wake. In the latter term the integration over y can 
be performed analytically, which yields 

(5.16) 

where r<  = p,  r ,  = r for p < r and r <  = r ,  r ,  = p for p > r .  The above expression is 
equivalent to one found by Hanson (1991, $ 7 )  for the wake-associated part of the 
downwash angle. Hanson also shows that the last term in (5.15) is cancelled by 
singularities in (5.16). This was shown previously by Lordi & Homicz (1981) for the 
case of a ducted rotor. 

6. The numerical application of the present method 
In this section we first apply the theory, as presented so far, to a $ scale model of 

the six-bladed Fokker 50 propeller, which has been used for aerodynamic 
measurements in the NLR Low Speed Wind Tunnel (Kooi & De Wolf 1988) and for 
acoustic measurements in the German-Dutch Windtunnel (DNW) (Schulten 1988). 
The value of the perturbation parameter e ,  according to (2.1), for this propeller is 
0.15. The operating conditions of the case we will consider were M = 0.12 and 

The central part of the numerical application of the present method is the 
calculation of the downwash velocity uyl from (3.37), (3.26) and (3.39). In  order to 
evaluate the Cauchy principal value in (3.37), we use the following relation, which 
can be derived from (3.38): 

Q = -0.67. 

which is expressed in the scalar variable rl by use of (4.10), to shorten the notation. 
Note that the last term cancels the second term on the right-hand side of (3.37). Next 
we make use of the following approximations involving Tchebycheff polynomials : 

where x ( p )  = c o ~ - ~ ( 2 ( p - r ~ ) / ( l - r ~ ) - l )  and xr = X(r ) .  We have assumed here that 
the lift behaves as (p-rh)' at the hub and as (1 -p ) i  at the tip; with respect to the 
behaviour at the hub this assumption is incorrect, but, as already mentioned in $2, 
the hub region contributes little to the aerodynamics and acoustics of a propeller. 
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FIQURE 3. The first- (-) and second-order (----) approximations for the circulation. 

The coefficients a, and b, can be determined such that the right-hand sides of 
(6.2a, b )  are least-squares approximations of the left-hand sides, evaluated at a given 
set of radii {Ti}. The relation between the coefficients a, and b, and the set {T1(ri)} is 
linear, e.g. a matrix B can be found such that 

see, for example, Dahlquist & Bjorck (1974, p. 92). The integration of the right-hand 
sides of (6.2a, b )  can be done analytically by using (Glauert 1959, p. 92): 

We thus find for the first term at  the right-hand side of (6.1): 

1 N 

[v:l,eIj-o = - - cos xr  a, -a cos 2xr a, + sin nxr sin xr a, 
n-2 2 

(n sin xr cos nXr +sin nXs cos 2,) b, . (6.5) 1 2 M  l N  

sin xr ,-1 

- -- [ b, +- 
1 - rh 4U 

Note that an expansion like the right-hand side of (6.2a), and hence the application 
of (6.4), is not possible for the integrand at  the left-hand side of (6 . l ) ,  owing to its 
non-vanishing values a t  the integration boundaries. The other parts of vyl can be 
calculated with standard numerical integration methods. 

In figure 3 the first- and second-order approximations of the circulation, i.e. e r ,  
and eT, + e 2 r 2 ,  are plotted as a function of the radius. It is quite clear from this plot 
that our supposition that the second term is of order e with respect to the first term, 
is not satisfied. In fact, the sum is negative over the whole blade, corresponding to 
a negative thrust, which is unphysical for the present conditions. We thus have to 
conclude that, although the circulation (and other quantities) can formally be 
expanded in powers of E ,  the coefficients of this expansion are too large for i t  to be 
of use when e is equal to 0.15 (or comparable values). 

Like any asymptotic series, the expansion for the circulation is divergent and the 
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FIQURE 4. The first- (-) and second-order (-----) approximations for the circulation, 
chord divided by 10. 

most accurate result is found by breaking off the expansion after a definite (usually 
small) number of terms; for the present case this number appears to be equal to one, 
and adding more terms will only worsen the result. 

To illustrate the role of the magnitude of E ,  we have plotted in figure 4 E f l  and 
e f l + e 2 r z  for the same case, with the chord of each blade section divided by 10, 
resulting in E = 0.015. Although such a propeller is not very realistic, this calculation 
shows that for this E the asymptotic theory yields plausible results. 

It will be shown in the next section how the present calculation method can be 
modified in order to be useful for larger perturbation parameters as well. This 
modified method will also be used to obtain a better understanding of the problem 
encountered in this section. 

7. The modified calculation method 
In  this section we will show how the analytical expressions we have derived for the 

downwash velocity tl&, can still be of use, despite the disappointing results of the 
previous section. Suppose that we write the relation between the first and second 
term of the asymptotic expansion for the circulation as 

f ,  = Lf , ,  (7.1) 

where L is a linear operator (see (5.10)), involving an integration in radial direction. 
Instead of calculating T', by application of (7.1), we now solve the following 
equation : 

(7.2) 

which, in the case of SZ = 0, is equivalent to Prandtl's integral equation for lifting 
wings, see (3.41). Note that if the method of matched asymptotic expansions were 
strictly applicable, i.e. if e f 2  4 f , ,  (7.1) and (7.2) would yield the same results (see 
also Van Holten 1976; Van Dyke 1975, p. 172). However, even in the case of 
helicopter blades, which have a very high aspect ratio, difficulties are met when (7.1) 
is applied (Johnson 1986). However, the analogue of (7.2) has been applied in a quite 
favourable validation of Van Holten's theory (Pierce & Vaidyanathan 1981). 

Note that the fact that the second-order circulation is not small compared to the 
first-order circulation does not mean that the downwash angle adw is large (i.e. of 
order unity); it just means that adw is not small compared to a-a,,. In fact, the 

f = E ( r l  + LO, 
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FIQURE 5. The circulation about an elliptic wing, A = 6.67 : -, integral equation ; --, first 
order ; ----, second order. 

I 

induced velocity is small compared to the zeroth-order velocity U,  i.e. of order e, 
which enables us to keep using the linear operator L. 

In order to solve (7.2) we could use an iterative procedure, the f i s t  step of which 
is the application of (7.1). As this procedure is not always convergent however, we 
solve (7.2) for a given set of radii {r6}  by matrix inversion, which involves the use of 
matrix 6 of (6.3).  To illustrate the meaning of (7.2) we first apply it to the same 
example as Van Dyke, i.e. a flat elliptic wing (SZ = 0, B = l ) ,  and we choose the 
aspect ratio to be A = 6.67, i.e. e = 0.15. 

In figure 5 the first- and second-order approximations of the asymptotic theory 
(i.e. e f ,  and e r , + e 2 f 2 )  as well as the solution of the integral equation (7.2) (i.e. r )  
are plotted. It is easily checked that these results agree with the analytical results for 
an elliptic wing : 

(7.3a, b)  

Furthermore, we notice that the asymptotic approximation yields much better 
results for the stationary wing than it did for the propeller. The two most important 
differences between a wing and a propeller, i.e. a propeller rotates and has at least 
two blades, appear to enhance the three-dimensional effects. This is not difficult to 
understand, considering the fact that the wake of a wing consists (at first order) of 
a single flat sheet, whereas the wake of a propeller consists of a multiple helix, which 
means that the flow at each blade section is considerably influenced by the other 
sections of both the same blade and the other blades. This causes the coefficient in 
front of the second term of the asymptotic expansion for the circulation, which 
equals 2 in (7.3a),  to be significantly larger in the case of a propeller than a wing. In 
other words, the ‘effective’ aspect ratio of a propeller blade is smaller than the aspect 
ratio of a wing of comparable span and chord. As the distance between a blade 
section and the nearest wake of another blade is proportional to B-l, it  might be 
better to take EB as the small parameter, which is close to 1 for the present example. 

To investigate the influence of the number of blades and angular velocity a little 
further, we have calculated the circulation for the same propeller as in the previous 
section, for four cases : B = 6 and 2,  combined with both SZ = -0.67 and 0. In the case 
of S2 = 0 we have ‘untwisted’ the blade to such an extent that the geometrical angle 
of incidence at each section is the same for all cases. The results are plotted in figure 
6 ( a - d ) ,  which shows clearly that both the reduction of the number of blades and 
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taking B = 0 significantly improve the results of the asymptotic theory. For D = 0 
the curves deviate from each other near the hub, which is a consequence of the choice 
of the basis functions in (6.2) ; these functions are not suitable for a stationary wing 
with the planform of a propeller blade. 

In order to investigate the influence of the number of basis functions used in (6.2), 
we have plotted the results for f for N = 2, 3, and 4 in figure 7. It turns out that, at 
least for the present case, N = 3 yields sufficient accuracy. 

0.03 

0.02 - 
-- ----_ (4 . -. 

0.01 - 7 - - =  .-___ \ \ 

r o !  

-0.01 - 

-0.02 I I a 



136 H .  H .  Brouwer 

It should be reiterated that (7.2), which is applicable for larger values of 8 than 
(7.1), is not the result of a consistent asymptotic expansion. As pointed out by Van 
Dyke, the third term in the asymptotic expansion for, for example, the circulation 
about an elliptic wing, the first two terms of which are given by the right-hand side 
of (7.3a), is logarithmic in s. This term cannot be extracted from (7.3b). In  the next 
section we will compare some results obtained by the application of (7.2) to 
experimental results, which will give us an indication of the usefulness of the present 
(modified) method for the prediction of propeller aerodynamics and acoustics. 

8. Comparison to experimental data 
The thrust and power coefficients of the scale model of the six-bladed Fokker 50 

propeller have been measured in the NLR Low Speed Wing Tunnel a t  various free- 
stream velocities, advance ratios, and blade settings (Kooi & De Wolf 1988). For the 
present comparison we have selected the measurements at a free-stream velocity of 
40 m/s and a blade angle (at 0.7 radius) of 28". The computations were carried out 
on a 386125 MHz personal computer, equipped with a math coprocessor, on which 
each calculation (for one advance ratio) took about 5 min. 

In  figures 8 and 9 the thrust and power coefficients are plotted as a function of the 
advance ratio. The discrepancies between the present results and the experimental 
data are some 5 % on the average, with a maximum of 9 % a t  the lowest advance 
ratio. 

In  $6 it was mentioned that the basis functions chosen to describe the spanwise 
distribution of the circulation do not behave correctly a t  the hub. In  order to check 
the consequence of this we compare the calculated spanwise load distribution, i.e. 
dC,/dr, with the experimental values from Kooi & De Wolf for J = 0.589, see figure 
10. The latter data were obtained from wake velocity measurements and are 
corrected for the contraction. The agreement is very good and there are no 
indications that the actual behaviour a t  both the hub and the tip is not captured by 
the present method. 

For J=O.57 another method, based on strip-theory combined with a two- 
dimensional viscous inner method, has been applied as well. The results, indicated by 
crosses, are some 11 YO higher than the experimental data. The latter method 
generated the pressure distributions used by Schulten (1988) for his acoustic 
calculations. These calculations consisted of solving the linearized Euler equations 
with full incorporation of the boundary conditions, i.e. the source term of the 
convected wave equation was determined by the detailed blade geometry and the 
pressure distribution on the blades, which amounts to an application of the Ffowcs 
Williams-Hawkings equation without the quadrupole term (Ffowcs Williams & 
Hawkings 1969). 

Next we will compare the acoustic results of the present theory to Schulten's 
results and the experimental data. The acoustic pressure is given by (see (5.12) and 
(5.13)) 

where L is the lift which is determined by the solution of (7.2). Some numerical 
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FIGURE 9. The power coefficient as a function of the advance ratio. Notation as figure 8. 
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FIGURE 10. Spanwise load distribution for J = 0.589: -0-, theory; 0, experiment. 

aspects of the integral in (8.1) as well as a far-field approximation can be found in 
Brouwer ( 1989). 

It can be shown that the loading and thickness noise parts of (8.1) equal the 
corresponding expressions derived by Hanson (1985) if: (i)  the chordwise dis- 
tributions occurring in Hanson’s work are replaced by &functions; and (ii) the 
downwash angle adW is neglected in the present work. These differences illustrate that 
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FIQURE 12. Comparison to Schulten’s results (n), same aerodynamic input : 
-, present results. 
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Hanson’s lifting surface theory is more suitable for propfans which have very thin 
blades (of low aspect ratio) and are thus designed for small angles of attack (and 
consequently small downwash angles). 

The computing time for each case, comprising the calculation of the sound pressure 
of one harmonic at 50 points in the x-direction for a constant value of r ,  was again 
about 5 min. In figure 11 the absolute value of the first harmonic ( i s .  the BPF tone) 
of p,, is plotted as a function of x for r = 1.32. The comparison of this result with the 
experimental results shows a reasonable agreement. The results obtained by 
Schulten show a somewhat better agreement with the experimental values. A closer 
inspection shows that the differences between the two sets of theoretical results can 
be ascribed entirely to the differences in the aerodynamic input. In  figure 12 we have 
plotted the results of both aeroacoustic computations with the same aerodynamic 
data as input, i.e. the data used by Schulten. It is obvious that both aeroacoustic 
methods give virtually the same answer, a t  least for the blade passing frequency of 
this propeller. 

The phase angle of the first harmonic of pa, is plotted in figure 13, together with 
the experimental values and Schulten’s results. The (almost constant) difference 
between both the theoretical results and the experimental results has not been 
explained yet. 

This section is concluded with the results a t  r = 3.9, shown in figures 14 and 15. In 
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FIGURE 13. Phase angle, BPF, r = 1.32. Notation as figure 11.  
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FIGURE 14. Sound pressure level, BPF, r = 3.9. Notation as figure 11.  
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FIGURE 15. Phase angle, BPF, r = 1.32. Notation as figure 11 .  

this case the agreement with both the measured sound pressure level and the 
measured phase angle is good. 

9. Conclusions 
Van Dyke's method of matched asymptotic expansions has been applied to the 

case of a propeller with blades of high aspect ratio in an axial uniform flow. In  
combination with thin airfoil theory, the method yields an asymptotic series for the 
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circulation about a propeller blade, the first two terms of which are explicitly derived 
in this paper ; the first term is the value found after application of two-dimensional 
airfoil theory to each blade section, the second term is a correction caused by the 
three-dimensional character of the problem. When applied to a typical case, 
however, the results turned out to be unphysical, which is because the expansion 
parameter of the problem, i.e. the reciprocal of the aspect ratio of a blade, is not small 
enough for realistic propellers. It appears that, in comparison to stationary wings, 
three-dimensional effects are more important, which leads to a smaller ‘effective ’ 
aspect ratio. 

This problem was remedied by transforming the approximation of the circulation 
by two terms into an integral equation. A numerical solution to this equation 
yielded, for the cases considered, results for the thrust and power coefficient which 
agree well with the experimental values. Once the circulation is known, the acoustic 
pressure can be calculated. The present formulation incorporates both loading and 
thickness noise. Comparison to the results of Schulten’s theory, in which details of 
the pressure distribution in the chordwise direction are taken into account, shows an 
almost exact agreement, while the agreement with experimental values is reasonable. 

The present method clearly shows that the aerodynamic and acoustic theories for 
propellers are closely related; the objective of both theories is the calculation of the 
flow perturbation. Indeed, the methods pertaining only to the acoustics of a propeller 
require the output data, for example pressure distributions, of an aerodynamic 
method. 

Besides giving some insight into the fundamentals of propeller theory, the present 
method also provides the basis for a practical calculation method, which yields both 
performance and noise data, with a minimum of computational effort. 

The author thanks J. B. H. M. Schulten for the many helpful discussions. 

Appendix A 
In this Appendix we discuss the multipole expansion of the source term in the 

momentum equation, (3.6). The derivation of (3.7) and (3.8) from (3.5) proceeds 
along the same lines. Consider a section of the propeller blade at  B = 0, of 
infinitesimal width, extending from r to r + dr, as depicted in figure 16. Let us assume 
that we may write the following multipole expansion : 

(A 1) 
1 
r 

p’VS S(S) = - [ - L(r)  + D(r) .  V + . . .] S(x) S(B), 

where S = 0 determines the surface of the blade as explained in the main text, and 
D is a tensor of rank two. Below, we will consider only the first two terms at  the right- 
hand side. 

We integrate (A 1 )  over a volume V,, which is bounded by r = rs and r = rs + dr and 
such values of 8 and x that  V ,  contains the blade section under consideration and no 
parts of the other blades. We then find for the left-hand side: 

p’VS S(S) d3r = dr s,, 
where C(r,)  is the boundary contour of the section a t  r = rs ,  dl is the differential 
arclength, and n is the normal vector of length unity on the blade surface. The 
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FIQURE 16. Blade section of width dr. 

integral over the second term on the right-hand side of (A 1) is zero, and the integral 
over the first term is trivial. We thus find 

" 

i.e. L(r)  is the lift per unit length on the blade section at r.  Note that its direction is 
not necessarily perpendicular to the pitch change axis. 

Next we take the inner product of (A 1 )  with the vector r-r,, where r, is given by 
(r,, O , O ) ,  and subsequently integrate over V,. For the left-hand side we find 

(r-rs)"p'VS6(S)] d3r x dr p'(r-r,).ndZ. (A 4) 
i v ,  i '3rd 

The integral over the first term on the right-hand side of (A 1) is proportional to (dr)2 
and gives zero contribution in the limit dr + 0. The second term can be integrated by 
parts, and we then find 

Finally we consider the r-component of the cross product of r-r, with (A l), which 
gives 

D z e ( r s ) - D e J r s )  = ~ ' [ ( r - r s )  x nlrdl- (A 6) J C@,) 
The right-hand side is equal to the negative of the pitching moment (M,) on the 

blade section, with its positive direction depicted in figure 16. Summation of (A 1) 
over all the blades yields (3.6). 

Appendix B 
First, consider a blade section in an incompressible two-dimensional flow. The 

coordinate frame to be used in this Appendix is depicted in figure 17. Note that the 
notation is independent of the notation in the main text. The velocity potential at 
large distances is approximated by 

r N-r 
$3 = ux+-jy--. 

2x 2xr2 
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FIQURE 17. The coordinate system used in Appendix B. 

The (dimensionless) momentum equation reads 

(V’V) u+ v p  = 0. (B 2) 

Let C ,  denote the contour defined by the blade section boundary, and let C,  be a 
circular contour of radius R a t  a large distance. The area enclosed by C ,  and C, is 
denoted by S. Now we take the inner product of (B 2) with r and integrate over S: 

Js r .  [ ( u s  V) v + V p ]  d2r 

p n .  r dl + ( r .  un- u + [ p ,  +8( u2 - v2)] n. r )  dl- (2pm + UZ) (7cB2 - A )  (B 3 b )  
= I,, I,, 
= 0, (B 3 4  

where A is the area of the blade section. In the last step Bernoulli’s theorem has been 
used. The second term of (B 3 b )  can be calculated from (B l) ,  which yields 

N,  =-A[ [cl(p-p,)n-rdZ+(PA-- ‘I 47c . 

The same procedure can be used for the z-component of the cross-product of r with 
(B 2). The result is 

This result can also be found in Milne-Thomson (1958, p. 92), where it is derived from 
Blasius’ theorem. 

To find the corresponding expressions in a compressible flow, within the thin airfoil 
approximation, we may apply the Prandtl-Glauert transformation, and neglect the 
nonlinear terms : 

N,  = -M,/U.  (B 5 )  

1 
N, = -- UA, 

P 
whereas the expression for N, is unchanged. 
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